If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-29x+95=0
a = 2; b = -29; c = +95;
Δ = b2-4ac
Δ = -292-4·2·95
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{81}=9$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-29)-9}{2*2}=\frac{20}{4} =5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-29)+9}{2*2}=\frac{38}{4} =9+1/2 $
| 2x^2-29+95=0 | | -5x+2=13*x | | 2^x+1=30 | | x+6=2x-(+11) | | 7x+4=-6(x-1)-15 | | 6•x=18 | | 1/3x-5=-18 | | 50+3x=60+2x | | X^=5x+2 | | 25x-35=5x/31 | | X^2=5x=2 | | 30x-35-5x=5x/25+6 | | x-(x/35,558.13)=50,000 | | 2x+1+15=7x+1 | | 4y=3+2y+8 | | 4x+12+8x+25=180 | | (1.13)^3x=2 | | 8/11t=3 | | 5(3x+4)+2x=7-3(-2x+11) | | 87*y-10=19 | | 4w=8=2w=7 | | 4x=6=4x+6 | | 18+5x=78 | | 4t=1=19 | | x^+10x+32=8 | | 4x+x+6=(x+1) | | x-(x/35558.13)=50000 | | 3x=6*9 | | (a-5)2+3(2a-1)=2a-13 | | 3x=6×9 | | (3z-3)(2z)=64 | | 4x(x3)=30 |